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Abstract—Python productivity for Zynq (PYNQ) is a
Linux environment targeted for use on Zynq UltraScale+
and Zynq-7000 platforms from AMD. Its main component is
a Python library that facilitates writing drivers, performing
direct memory access (DMA) transfers and executing other
complex tasks directly from the Python environment. This
enables the use of a high-level programming language with
a rich library set to control the implemented hardware
design directly. However, the newest architecture of AMD
all-programmable systems on chip (SoCs), Versal does not
support PYNQ. It represents a paradigm shift, with a tighter
coupling between the field-programmable gate array (FPGA)
fabric, the processing system, and the newly introduced artifi-
cial intelligence (AI) engines. This makes the straightforward
porting of the PYNQ environment to the new hardware im-
possible. Through the use of specific implementation settings
and modifications to the PYNQ library, the work from this
paper successfully ported much of the PYNQ functionality
to the new platform. These modifications were tested on a
VCK190 board, featuring a Versal Core XCVC1902 ACAP.

Index Terms—PYNQ, FPGA, Versal ACAP, Zynq Ultra-
Scale+, MPSoC, Python

I. INTRODUCTION

The newest FPGA device family from AMD (formerly
Xilinx) is the Versal series [1]. Devices from that series
introduced the new AI cores, the new Network on Chip
(NoC), upgraded ARM processing system, and improved
connectivity. The top-level architecture of the devices from
the family is shown in Fig. 1.

Figure 1. Illustration of the Versal ACAP structure provided by AMD
[2]

The new programmable SoC type is now called an
ACAP (Adaptive Compute Acceleration Platform) and it
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represents a paradigm shift toward a tight integration be-
tween all of the components through the NoC [3]. The new
AI engines enable the implementation of AI and signal
processing tasks on a grid of very long instruction word
(VLIW) processors with integrated memory and direct
memory access (DMA) controllers [4]. This means that
a single solution can use the FPGA fabric, the distributed
processing of the AI engines, and the classic real-time
or application software running on the ARM cores. It is
possible to use Vitis Unified Software Platform tools for
HLS [4], i.e. to write the code for the entire system in
the same C-like environment, and to optimize it using
pragmas. The user can still maintain control and follow the
earlier design flow with the register transfer level (RTL)
design being written in Verilog or VHDL. Currently, the
user needs to follow the entire ACAP design workflow
in order to access such a design from software. This
workflow can be cumbersome in the prototyping stage
of the design, and the process can become convoluted
quickly.

To increase productivity and reduce the time between
having an RTL design and running it on actual silicon,
AMD/Xilinx introduced Python Productivity for Zynq
(PYNQ) [5], which supports previous generations of their
SoCs. This environment runs on an Ubuntu distribution of
Linux, featuring the PYNQ Python library and the Jupyter
Lab server. All of the software components are running
onboard the application processors of the device. Jupyter
Lab enables direct access to the device, with an interactive
Python interpreter enabling code execution directly from
the web browser. For programming the FPGA fabric of
the SoC, a bitstream file generated by the Vivado imple-
mentation tool is used. Direct programming of the FPGA
fabric is possible directly from the Python interpreter.
PYNQ introduces a Python class called Overlay, which
provides the abstraction of the entire FPGA design and
its components. Its constructor takes as an argument the
bitstream file, and, when called, programs the FPGA
programmable logic (PL).

To facilitate access to the peripherals in the PL, the
PYNQ library also handles their memory map. This is
done through a hardware handoff (.hwh) file generated
using the IP integrator flow in Vivado. The .hwh file
is an XML-formatted file containing design information,
including address offsets, register maps, and types of
IP cores connected to the processing system using the
AXI4 memory-mapped interface. Upon construction, the
Overlay class parses the .hwh file which is bundled
with the bitstream and identifies the peripherals that the979-8-3503-0313-1/23/$31.00 ©2023 IEEE



processing system (PS), containing ARM CPU cores, can
access. It then compares the type of peripheral (vendor,
library, name, and version (VLNV) string from Vivado)
with the list of available drivers and instantiates either a
dedicated driver or a generic driver. The generic driver
enables access to the registers of the peripheral, through
read and write methods. Those methods take the
address of the register relative to the component’s base
address, while the base address is obtained from the parsed
.hwh. Dedicated drivers for common IPs, such as DMA
and general-purpose input/output (GPIO) controllers or
RF Data converters in the case of RFSoCs are already
delivered with PYNQ. The user can implement custom
drivers easily, by defining a Python class derived from the
DefaultIP class. For DMA controllers, PYNQ provides
access to a library for the allocation of contiguous mem-
ory which is seamlessly integrated with both the DMA
controller driver and the NumPy library array [6].

The described workflow enables the bring up of a
possibly complex set of IPs, with memory-mapped control
and streaming data interfaces with just several lines of
Python code. If, for example, a streaming FFT IP core
has been designed, it can be integrated into the PL with
a DMA controller, and downloaded using PYNQ. The
input data and the results can be generated and compared
against a floating point FFT implementation from the
NumPy library. The IPs can also be verified directly
on the FPGA with minimal setup, using the Pytest
library. Another benefit of such a workflow is that it
enables remote operation of the board, over the Ethernet
without the need for a dedicated PC running Vivado
Hardware Manager [7]. This feature set vastly increases
the efficiency and the ability to early test and verify RTL
design, whether encompassing the entire system or merely
a constituent component thereof. The PYNQ framework
can also be used for the rapid prototyping of machine-
learning tasks [8] or deployment of flexible neural network
implementations [9].

However, besides all the advantages of the PYNQ
workflow, it still has not been supported for the Versal
devices. Moreover, the PYNQ porting on Versal is still
not in AMD’s development pipeline [10]. This provided
the motivation to integrate the advantages of Versal ACAP
devices with such a powerful environment. Therefore, this
paper addresses this issue and provides a method for
successfully porting PYNQ on Versal.

II. VIVADO SYNTHESIS AND IMPLEMENTATION FLOW
FOR PYNQ

A. Versal-Specific Boot Sequence

Zynq (MPSoC and Zynq-7000) had a clear separation
between FPGA fabric and its systems, meaning that the
user could program the FPGA portion like it were another
device, with userspace drivers. Zynq processing system
(PS) from the designer’s point of view is available as
a monolithic hard IP core that communicates with the
PL using AXI4 slave and master interfaces and does not
expose any internal memory interfaces to the user.

However, the Versal ACAP architecture features much
more tightly integrated components. The PS is integrated
into the larger hard IP core, called the Control, Interfaces,

and Processing System (CIPS), which, as a standalone
component, is not capable of booting the operating system.
The CIPS cannot operate without some programmable
logic. Additionally, the only way to program the PL is
through CIPS using the first-stage bootloader (FSBL).
This causes issues when trying to implement a PYNQ
workflow. Linux cannot boot if the PL is not programmed,
whereas the PYNQ workflow is based on reprogramming
the hardware in runtime. This is one of the main PYNQ
benefits, enabling the user to quickly implement the design
(without going into Vitis- or petalinux-specific tasks) and
testing/integrating it immediately in a high-level Python
environment.

To better understand why is it fundamentally necessary
to program the PL before booting the OS, observe the
minimum configuration needed for booting a Linux image
in Fig. 2.
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Figure 2. Minimum CIPS connections to boot Linux

The connection to the DDR goes through PL, i.e.,
through the NoC, which is configured together with the
PL. NoC is a novel concept introduced in the Versal ar-
chitecture, which represents a series of hard IP-like AXI4
and AXI4-Stream interconnects that are placed across the
entire chip [11]. It also features DDR controllers that are
used for connecting to the external RAM. This part is
almost statically connected in the SoC fabric but still needs
to be configured using FSBL before booting the applica-
tion. Having in mind that this is a significant difference
from the previous generation, AMD/Xilinx introduced the
Classic SoC Boot mode in their Vivado software suite
[12]. It leverages partial reconfiguration to program the
minimum CIPS setup as a static design, while the “PL”
design is kept in a dynamic region. The Classic SoC Boot
mode provides a set of constraints for the dynamic region,
such that the entire FPGA fabric is encompassed, and that
the static region is always implemented and placed in the
same way, allowing the user to run implementation in
multiple projects. This feature will be used to run PYNQ,
emulating the Zynq behavior.

B. The Classic SoC Boot Project

In order to facilitate the valid PYNQ workflow, it is
necessary to create a Classic SoC Boot8 project in which
user-logic interfaces are configured and exposed [13]. The
static region of this base project will be used for booting
the board. The most common PYNQ workflow requires the
CIPS AXI master interface for accessing peripherals, as
well as the DDR AXI slave interface for executing DMA
transfers. The master interface of the CIPS is available di-
rectly, whereas the DDR slave interface is exposed through
the NoC, meaning that the DMA controller drives the
memory writes without going through the CIPS. Following
the Classic SoC Boot constraints, the DDR AXI slave
connection is exposed to user logic via the inter-NoC



interconnect (INI) interface. The static region block design
with the the dynamic region interface is shown in Fig. 3.
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Figure 3. Block design of the static region with the exposed dynamic
region (PL) interfaces

In the rest of the paper, an example design with a
DMA loopback in the dynamic region will be used for
demonstration and testing (Fig. 4). Even though it is
simple, it demonstrates both the memory-mapped and the
DMA access, which are core PYNQ functionalities.
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Figure 4. Example of a dynamic portion of the design

Examining the design further, the smartconnect_0
is used for driving the memory-mapped peripherals
and performing address decoding, while the
smartconnect_1 handles the DMA traffic. Bridge
from an AXI4 interface to the INI interface is done
through axi_noc_0.

Both the static and the dynamic region designs are
synthesized and implemented using standard Vivado flows.
The tool automatically applies pblock constraints on the
design when the project’s classic_soc_boot property
is set. The output of the implementation tasks is used for
generating the device images. Device image (.pdi) is
the new file format used for the ACAP, equivalent to a
bitstream file from previous architectures. The static region
device image is used when booting the device and the
operating system, while the dynamic region image is used
from the PYNQ environment, in the same manner as the
legacy bitstream.

III. PYNQ IMAGE AND LIBRARY MODIFICATIONS

A. SD Card Image Compilation

The PYNQ environment has a well-documented pro-
cedure for generating a device image for a new board,
that is not readily supported [14]. It requires modifications
of the configuration files and good knowledge of the
build process. This task is significantly broadened when
changing the target platform to a Versal board.

As a starting point for achieving all functionalities
described above, an open-source project called MLIR-
AIR [15] is used. It is an example board image used for
prototyping with the AI cores that are available on Versal
platforms. Prototyping is done through the use of the AIR
dialect of MLIR, which enables the description of the AI
engine graph and its control. In order to fast-track their
development, the authors of the MLIR-AIR project used
the readily available PYNQ v2.7 image as a starting point.
MLIR-AIR image supports, among others, the VCK190

board. However, because it was compiled starting from a
stock PYNQ image, it features the installed PYNQ library
that is not functional and also boots the board with a
specific design in the FPGA fabric, which cannot be reused
for the PYNQ workflow.

To enable the proper configuration of the CIPS and
boot the board with the static region design described
in subsection II-B, in this work, a new petalinux build
is performed with the PYNQ-specific design. The static
hardware design can be exported from Vivado and used for
configuring a stock petalinux project, with rootfs location
set to SD card. To prepare the files for booting the device,
the following command is called after performing the
build:
petalinux-package --boot --plm

--psmfw --uboot --dtb --format MCS
Files from the boot partition of the MLIR-AIR image

are then substituted by the packaged file from the petalinux
build. At the boot stage, the FPGA fabric’s static region
is programmed, and the dynamic region from any Classic
SoC Boot project can be used for programming the device.

B. PYNQ Library Modifications

This section describes the necessary modifications of the
PYNQ Python library for obtaining a functional workflow
on Versal ACAP platforms. It references specific library
definitions, classes, and methods from the PYNQ library,
whose definitions and detailed descriptions can be found
in [16].

Since the device is programmed using a .pdi file
instead of a bitstream, modifications to the Overlay’s
download method were needed. Considering the changes
in the interface of the FPGA manager driver on Zynq and
Versal, its operation is mainly the same.

For Zynq, the binary data is extracted from the bit-
stream and written to a .bin file. This file is copied
to /lib/firmware. Partial bitstreams could also be
downloaded, and in that case, a “1” is written to the
/sys/class/fpga_manager/fpga0/flags driver
file. The download of the design to the FPGA configura-
tion manager is then initiated by writing the bin filename to
/sys/class/fpga_manager/fpga0/firmware.

For Versal, the full bitstream download is impossible, so
the partial bitstream is always configured, and there is no
need for a write to the flags driver file. To download a
.pdi file, it is copied to /lib/firmware, and its name
is written to the firmware driver file. This is very similar
to the previous architecture, so a PdifileHandler with
similar behavior to BitfileHandler was added to a
list of bitstream handlers in the embedded_device.py
file of the PYNQ library.

For Zynq, after a download, the processing system is
reconfigured to accommodate the AXI4 interface size of
the design. This is done by accessing the register map of
the processing system. Since the Classic SoC Boot has the
bus widths determined in the static part of the design, the
library was modified to stop the reconfiguration in order
to prevent runtime errors.

For allocation of the contiguous memory arrays, the
newer versions of PYNQ, including v2.7 used here, use
the Xilinx Runtime (XRT) library. Since the Versal device



is not compatible with the XRT library installed on the
built image, during this work it was not possible to get it
running. Instead, the legacy Xlnk class from the previous
versions of PYNQ was utilized. It uses the /dev/xlnk
device as an interface to the kernel. To enable the
/dev/xlnk on the design, a device tree overlay was
made with the following entry: xlnk { compatible
= "xlnx,xlnk-1.0"; };, and the overlay target path
“/”. After loading the device tree, the Xlnk library works
in the same way as legacy PYNQ versions. In order to
maintain the same API as the v2.7, a wrapper was made
that enables calls of the pynq.allocate method.

The Vivado tool generates hardware handoffs for both
the static and the dynamic device images. Since all the
memory-mapped peripherals of interest are placed in the
dynamic portion of the design, the dynamic device image
hardware handoff should be used alongside the .pdi.
Since no major changes in the .hwh formatting were
made for the new architecture, the existing parser operates
normally, without modifications. The underlying method
which is used for accessing the peripheral memory is to
call mmap of the /dev/mem. Fundamentally, this means
that the PYNQ library is able to interpret the entire
physical memory of the processing system as one large
array that is indexed by the memory address. Offsets
that are parsed from the .hwh are used for selecting the
absolute address. This proved to be a very effective way
of abstracting the hardware access, and since it is device-
agnostic, there were no changes required.

IV. RESULTS AND DISCUSSION

The PYNQ environment functionality was successfully
ported to the new Versal ACAP devices. During the
course of our work, the VCK190 development board
from AMD was used for development and testing, but
the procedure should be easily replicated for other Versal
devices. For the entire work, Vivado 2021.2 and petalinux
2021.2 were used, since they were compatible with the
MLIR-AIR compilation flow. The process should be easily
transferrable to newer versions.

In terms of the RTL design, a slightly modified work-
flow in Vivado is needed. The user should implement a
new block design container with the specified interface,
and configure it for dynamic implementation. At the time
of the writing of this paper, this process still involves some
manual configurations in Vivado, so further work on .tcl
scripts should be done.

A screenshot of Jupyter Lab executing a test of the
design from Fig. 4 on the VCK190 board is shown in
Fig. 5.

V. CONCLUSION

This paper introduces a method for using a powerful
PYNQ environment on Versal ACAP devices. To the best
of the author’s knowledge, this is the first time that the
functionality of the PYNQ library has been adapted to
work on a Versal platform. This work enables a productive
workflow that simplifies the design, testing, and verifi-
cation of FPGA IP cores that are particularly built and
optimized for Versal. As Versal devices introduce many

novelties when compared to the previous families, this

Figure 5. Screenshot of the Jupyter Lab window, with a demo of the
PYNQ functionality on Versal

work gives the user the ability to access those powerful
new features using a simple interface.

As a future work, the final goal of this project is to
implement a complete Vivado framework that enables the
implementation of the same block designs for both Versal
and Zynq platforms, with identical PYNQ code used for
testing.
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